
A ShExML Perspective on
Mapping Challenges
Already Solved Ones, Language Modifications and Future Required Actions

Herminio García González - garciaherminio@uniovi.es - @herminio_gg

mailto:garciaherminio@uniovi.es

What are the mapping challenges?

Introduction

• Declarative mapping rules

• Single representation for heterogeneous data sources

• Modifiability, shareability, efficiency

• However, some mappings are still not reachable

• Defined and agreed by the community

• Need to be solved

Summary

Mapping challenges

• 9 mapping challenges

• Inputs defined by the community to test different scenarios

• ShExML mapping language

• 5 challenges completely solved

• 2 partially covered

• 2 unaddressed

Brief ShExML Introduction

A flash introduction

ShExML language overview

A flash introduction

ShExML language overview

Prefixes

A flash introduction

ShExML language overview

Prefixes

Sources (URL + variable name)

A flash introduction

ShExML language overview

Prefixes

Sources (URL + variable name)

Iterators + Fields (extract content 
from input files using queries)

A flash introduction

ShExML language overview

Prefixes

Sources (URL + variable name)

Iterators + Fields (extract content 
from input files using queries)

Expressions to be applied to  
iterators or to actual values  
(result will be, accordingly, an
iterator or a value)

A flash introduction

ShExML language overview

Prefixes

Sources (URL + variable name)

Iterators + Fields (extract content 
from input files using queries)

Expressions to be applied to  
iterators or to actual values  
(result will be, accordingly, an
iterator or a value)

Shapes (give form to the output graph)

How it works?

ShExML iteration model

• Iterator (tells the engine to traverse all results)

• Fields (actual value/s to be outputted)

• Nested iterators (to traverse down in the
hierarchy)

• films_xml.actors.name

• //film[i]/cast/actor[j]/name

• No need to join

Addressed Challenges

The problem

Datatype map

• Generate datatype from input data

• Dynamic vs static

• Different possible format inputs

• http://www.w3.org/2001/XMLSchema#integer

• xsd:integer

• integer

• int

ShExML old syntax

Datatype map

• ShExML allowed to generate static
datatypes

• It does not solve the previous case

• We should generalise the existing
syntax for dynamic generation

ShExML new syntax

Datatype map

• Expand the content generation expression but for
datatypes

• It allows different types representations

• Prefixed or not

• Works like subject/object generation expressions
but for datatypes

The problem

Language map

• Generate language tag from input data

• Dynamic vs static

• Different possible format inputs

• en

• English

ShExML old syntax

Language map

• ShExML allowed to generate static
language tags

• It does not solve the previous case

• We should generalise the existing
syntax for dynamic generation

ShExML new syntax

Language map

• Expand the content generation expression but for
datatypes

• It allows different types representations

• We can use MATCHERS to generate BCP47 conformant
tags

• Works like subject/object generation expressions but for
datatypes

The problem

Generate multiple values

• Multi-language or multi-datatype values for the
same subject

• Additionally, default languages or datatypes

ShExML solution

Generate multiple values

• Multi-value generation bounds language and datatype
generation to the current index

• Using old syntax we can generate additional default
triples

The problem

Join on literal

• Joins, by default, generate resources

• There is no way to output literals instead

ShExML solution

Join on literal

• ShExML allows (from its inception) to
output resources and literals on joins

• Separation of concerns

• How to extract and transform data

• How to output data

Extract/ transform

Output

The problem

Multi-value references

• How to deal with the expected
output in a hierarchical file

• Cartesian product or respect the
current relation

• Join condition poses problems in
JSON files as it is not possible to go
upwards

ShExML solution

Multi-value references

• ShExML allows to nest iterators

• No need for join condition

• More usable

• Thus, verbatim translation

The problem

Access fields outside iterators

• How to access upper fields

• JSON path doesn’t allow going
upwards

• From cars how to reach owners?

ShExML solution

Access fields outside iterators

• Pushed fields allow to save value
information for later use

• Popped fields allow to recover
values from pushed fields

• Inspired in xR2RML’s xrr:pushDown

• Pushed and popped like in a stack

• But popped is not gone forever

Actual queryTells the engine to save
the value under “id”

name

Tells the engine to
recover the value under
“id” name and expose

the value under
“carOwner” name

Explicit vs implicit

Access fields outside iterators

• Delva T. et al. [1] proposed an algorithm that saves iteration information

• No need to push and pop fields, transparent to the user

• But, it saves a lot of information -> Possible bottlenecks

• Further challenge, quantify the best option in terms of:

• Usability

• Performance

[1] Delva, T., Van Assche, D., Heyvaert, P., De Meester, B., & Dimou, A. (2021). Integrating nested data into knowledge graphs with RML fields.

The problem

RDF Collections

• Generate collections from multi-
value references

• Different RDF Collections and
Containers

• List

• Bag, Seq, Alt

ShExML solution

RDF Collections

• Indicate the collection in the
generation expression

• AS + (RDFList, RDFBag, RDFSeq,
RDFAlt)

Coverage summary

Addressed challenges

Before

Access fields outside iterators
Datatype map

Excel style
Generate multiple values

Join on literal
Language map

Multivalue references
Process multivalue references

RDF Collections

0 % 25 % 50 % 75 % 100 %

Coverage summary

Addressed challenges

After

Access fields outside iterators
Datatype map

Excel style
Generate multiple values

Join on literal
Language map

Multivalue references
Process multivalue references

RDF Collections

0 % 25 % 50 % 75 % 100 %
After

Access fields outside iterators
Datatype map

Excel style
Generate multiple values

Join on literal
Language map

Multivalue references
Process multivalue references

RDF Collections

0 % 25 % 50 % 75 % 100 %

Unaddressed Challenges
And How They Could Be Addressed

Possible solution A

Excel style

• How to process Excel sheets values
and styles?

• Preprocess and add more columns
with style

• Input as CSV No need to change the language and
the engine

Need to preprocess (not ideal for users)

Possible solution B

Excel style

• How to process Excel sheets values
and styles?

• Support Excel sheets directly

• How to access styles?

• Need for a specific query
language

Easy and straightforward for users

Too much design and implementation
for a working solution

Possible solution A

Process multivalue references

• How to add data transformation
functions in ShExML?

• Add support for FnO functions
library

• No need to develop a dedicated
function infrastructure

All function infrastructure outside ShExML
language and engine

More dependencies to users which need
to learn a third-party environment 
We lose control of this part

Possible solution B

Process multivalue references

• How to add data transformation
functions in ShExML?

• Allow to define inline functions

• Extension mechanism as
semantic actions in ShEx

• All in the same environment

No third-party dependencies 
Higher flexibility 
No need to learn another tool

Higher complexity due to the necessity to
know about functional programming

Discussion and Conclusions

Discussion & Conclusions
• Added solutions try to maintain ShExML usability

• Using similar syntax constructions

• Some challenges were already solved by ShExML

• Separation of concerns can help to solve some of them

• Further challenges

• Need to be carefully designed and included in the language

• First step on how the challenges can be solved

• Solutions from other languages and joint discussion -> Unified solutions

A ShExML Perspective on
Mapping Challenges
Already Solved Ones, Language Modifications and Future Required Actions

Herminio García González - garciaherminio@uniovi.es - @herminio_gg

mailto:garciaherminio@uniovi.es

